Spiro-thiophene Derivative as Hole-transport Materials for Perovskite Solar Cells

نویسندگان

  • Shuying Ma
  • Hua Zhang
  • Ning Zhao
  • Yibing Cheng
  • Mingkui Wang
  • Guoli Tu
چکیده

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. Accepted Manuscript Journal of Materials Chemistry A

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering

We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the v...

متن کامل

Solution-Processed Cu(In, Ga)(S, Se)2 Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells

Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hol...

متن کامل

Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells.

We predict the ionisation potentials of the hole-conducting material SPIRO-OMeTAD and twelve methoxy isomers and polymethoxy derivatives. Based on electronic and economic factors, we identify the optimal compounds for application as p-type hole-selective contacts in hybrid halide perovskite solar cells.

متن کامل

Shelf life stability comparison in air for solution processed pristine PDPP3T polymer and doped spiro-OMeTAD as hole transport layer for perovskite solar cell

This data in brief includes forward and reverse scanned current density-voltage (J-V) characteristics of perovskite solar cells with PDPP3T and spiro-OMeTAD as HTL, stability testing conditions of perovskite solar cell shelf life in air for both PDPP3T and spiro-OMeTAD as HTL as per the description in Ref. [1], and individual J-V performance parameters acquired with increasing time exposed in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015